4.8 Article

Stable ordered FePt mesoporous silica catalysts with high loadings

Journal

CHEMISTRY OF MATERIALS
Volume 20, Issue 15, Pages 5005-5015

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm800879q

Keywords

-

Funding

  1. Division Of Materials Research
  2. Direct For Mathematical & Physical Scien [0830074] Funding Source: National Science Foundation

Ask authors/readers for more resources

A new concept is presented to form catalysts by infusion of presynthesized bimetallic nanocrystals into ordered mesoporous supports. For presynthesized FePt nanocrystals (<4 nm) coated with oleic acid and oleylamine ligands in toluene, high loadings above 10 wt .% were achieved in 10 min. The strong metal-support interactions were favored by the low coverage of the weakly bound ligands. The nanocrystals were highly dispersed within the pores as indicated by HAADF-STEM and X-ray diffraction (XRD) and stable against sintering at 700 degrees C and desorption into polar and nonpolar solvents at room temperature. A phase transformation from a disordered phase (FCC) to ordered phase (FCT) was observed upon thermal annealing at 700 degrees C without sintering, as confirmed by convergent beam electron diffraction and XRD. The calcined FePt catalyst exhibited 6-fold higher catalyst activity (TOF = 30 s(-1)) than that of a commercial Pd-alumina catalyst for liquid I-decene hydrogenation and was stable for multiple reactions. The decoupling of nanocrystal synthesis and infusion provides exquisite control of the nanocrystal size, alloy structure, binding to the support and dispersibility within the pores, offering broad opportunities for enhanced catalyst activities, selectivities, and stabilities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available