4.0 Article

Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique

Journal

CHEMISTRY CENTRAL JOURNAL
Volume 6, Issue -, Pages -

Publisher

SPRINGEROPEN
DOI: 10.1186/1752-153X-6-17

Keywords

Iron oxide; Polysaccharides; MAPLE; Thin films; HepG2 cells

Funding

  1. European Social Fund by the Sectorial Operational Program for Development of Human Resources
  2. [POSDRU 88/1.5/S/61150/2010]

Ask authors/readers for more resources

Background: In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.% iron oxide nanoparticles (IONPs). The IONPs were synthesized by co-precipitation method. A KrF* excimer laser source (lambda = 248 nm, tau(FWHM)congruent to 25 ns, nu = 10 Hz) was used for the growth of the hybrid, iron oxide NPs-dextran thin films. Results: Dextran coated iron oxide nanoparticles thin films were indexed into the spinel cubic lattice with a lattice parameter of 8.36 angstrom. The particle sized calculated was estimated at around 7.7 nm. The XPS shows that the binding energy of the Fe 2p(3/2) of two thin films of dextran coated iron oxide is consistent with Fe3+ oxides. The atomic percentage of the C, O and Fe are 66.71, 32.76 and 0.53 for the films deposited from composite targets containing 1 wt.% maghemite and 64.36, 33.92 and 1.72 respectively for the films deposited from composite targets containing 5 wt.% maghemite. In the case of cells cultivated on dextran coated 5% maghemite gamma-Fe2O3, the number of cells and the level of F-actin were lower compared to the other two types of thin films and control. Conclusions: The dextran-iron oxide continuous thin films obtained by MAPLE technique from composite targets containing 10 wt.% dextran as well as 1 and 5 wt.% iron oxide nanoparticles synthesized by co-precipitation method presented granular surface morphology. Our data proved a good viability of Hep G2 cells grown on dextran coated maghemite thin films. Also, no changes in cells morphology were noticed under phase contrast microscopy. The data strongly suggest the potential use of iron oxide-dextran nanocomposites as a potential marker for biomedical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available