4.3 Article

Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension

Journal

CHEMISTRY AND PHYSICS OF LIPIDS
Volume 159, Issue 2, Pages 67-76

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.chemphyslip.2009.03.005

Keywords

Giant vesicle; Oleic acid; Phosphatidylcholine; Membrane growth

Funding

  1. Slovenian Research Agency [P1-0055]
  2. COST Action D27

Ask authors/readers for more resources

The interaction of two types of vesicle systems was investigated: micro meter-sized, giant unilamellar vesicles (GUVs) formed from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and submicrometer-sized, large unilamellar vesicles (LUVs) formed from oleic acid and oleate, both in a buffered aqueous solution (pH 8.8). Individual POPC GUVs were transferred with a micropipette into a suspension of oleic acid/oleate LUVs, and the shape changes of the GUVs were monitored using optical microscopy. The behavior of POPC GUVs upon transfer into a 0.8 mM suspension of oleic acid, in which oleic acid/oleate forms vesicular bilayer structures, was qualitatively different from the behavior upon transfer into a 0.3 mM suspension of oleic acid/oleate, in which oleic acid/oleate is predominantly present in the form of monomers and possibly non-vesicular aggregates. In both cases, changes in vesicle morphology were observed within tens of seconds after the transfer. After an initial increase of the vesicle cross-section, the vesicle started to evaginate, spawning dozens of satellite vesicles connected to the mother vesicle with narrow necks or tethers. In 60% of the cases of transfer into a 0.8 mM oleic acid Suspension, the evagination process reversed and proceeded to the point where the membrane formed invaginations. In some of these cases, several consecutive transitions between invaginated and evaginated shapes were observed. In the remaining 40% of the cases of transfer into the 0.8 mM oleic acid suspension and in all cases of vesicle transfer into the 0.3 mM oleic acid suspension, no invaginations nor subsequent evaginations were observed. An interpretation of the observed vesicle shape transformation on the basis of the bilayer-couple model is proposed, which takes into account uptake of oleic acid/oleate molecules by the POPC vesicles, oleic acid flip-flop processes and transient pore formation. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available