4.1 Article

Polypeptide Translocation by the AAA plus ClpXP Protease Machine

Journal

CHEMISTRY & BIOLOGY
Volume 16, Issue 6, Pages 605-612

Publisher

CELL PRESS
DOI: 10.1016/j.chembiol.2009.05.007

Keywords

-

Funding

  1. National Institutes of Health [Al-15706]
  2. HHMI

Ask authors/readers for more resources

In the AAA+ ClpXP protease, ClpX uses repeated cycles of ATP hydrolysis to pull native proteins apart and to translocate the denatured polypeptide into ClpP for degradation. Here, we probe polypeptide features important for translocation. ClpXP degrades diverse synthetic peptide substrates despite major differences in side-chain chirality, size, and polarity. Moreover, translocation occurs without a peptide -NH and with 10 methylenes between successive peptide bonds. Pulling on homopolymeric tracts of glycine, proline, and lysine also allows efficient ClpXP degradation of a stably folded protein. Thus, minimal chemical features of a polypeptide chain are sufficient for translocation and protein unfolding by the ClpX machine. These results suggest that the translocation pore of ClpX is highly elastic, allowing interactions with a wide range of chemical groups, a feature likely to be shared by many AAA+ unfoldases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available