4.1 Article

Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms

Journal

CHEMISTRY & BIOLOGY
Volume 15, Issue 5, Pages 427-437

Publisher

CELL PRESS
DOI: 10.1016/j.chembiol.2008.04.004

Keywords

-

Funding

  1. Medical Research Council Funding Source: Medline

Ask authors/readers for more resources

High-throughput, cell-based assays require small sample volumes to reduce assay costs and to allow for rapid sample manipulation. However, further miniaturization of conventional microtiter plate technology is problematic due to evaporation and capillary action. To overcome these limitations, we describe droplet-based microfluidic platforms in which cells are grown in aqueous microcompartments separated by an inert perfluorocarbon carrier oil. Synthesis of biocompatible surfactants and identification of gas-permeable storage systems allowed human cells, and even a Multicellular organism (C. elegans), to survive and proliferate within the microcompartments for several days. Microcompartments containing single cells could be reinjected into a microfluidic device after incubation to measure expression of a reporter gene. This should open the way for high-throughput, cell-based screening that can use >1000-fold smaller assay volumes and has similar to 500x higher throughput than conventional microtiter plate assays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available