4.7 Article Proceedings Paper

Overview of lipid peroxidation products and hepatic protein modification in alcoholic liver disease

Journal

CHEMICO-BIOLOGICAL INTERACTIONS
Volume 192, Issue 1-2, Pages 107-112

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2011.02.021

Keywords

Alcoholic liver disease; Oxidative stress; Proteomics; Hepatic 4-HNE modified proteins

Funding

  1. NIAAA NIH HHS [R37 AA009300-15, F31 AA018898, 5 F31 AA018898-02, R37AA09300, F31 AA018898-02, R37 AA009300] Funding Source: Medline
  2. NIDDK NIH HHS [R01 DK074487-01, R01 DK074487-01A2, R01 DK074487] Funding Source: Medline

Ask authors/readers for more resources

Objectives: Oxidative stress is one component of alcoholic liver disease (ALD) that is manifested in the peroxidation of cellular lipids producing the electrophile, 4-hydroxynonenal (4-HNE). This electrophile is proposed to modify essential cellular proteins resulting in loss of protein function and cellular homeostasis. Studies were initiated to identify hepatic proteins that are targets of 4-HNE modification and determine their relationship with progression of the early stages of ALD. Methods: Rat and mouse models were developed using the Lieber-DeCarli diet to simulate early stages of ALD consisting of fatty liver (steatosis) and hepatocellular injury indicated by a 1.5-2-fold elevation of plasma ALT activity. Liver samples obtained from control and ethanol treated animals were subjected to two-dimensional electrophoresis and immunoblotting using polyclonal antibodies generated against 4-HNE epitopes for detection of proteins modified by 4-HNE. Following identification of 4-HNE adducted proteins, the respective recombinant proteins modified with physiologic concentrations of 4-HNE were evaluated to determine the functional consequences of 4-HNE modification. Results: One group of proteins identified included Hsp70. Hsp90 and protein disulfide isomerase (PDI), all of which are involved in protein folding or processing are targets of adduction. In vitro assays indicated significant impairment of the protein activities following modification with physiologically relevant concentrations of 4-HNE. Liver fatty acid binding protein. L-FABP, was also identified as a target and additional studies revealed that the levels of this protein were significantly decreased because of chronic ethanol ingestion. Erk1/2 was identified as a target for modification and subsequently determined to have impaired activity. Conclusions: Inhibition of Hsp70, Hsp90 and PDI function could be involved in initiation of the early phases of ER stress contributing to stimulation and accumulation of hepatic lipids. Likewise, impairment of L-FABP activity could also disrupt lipid transport also contributing to steatosis. The modification and inhibition of Erk1/2 by 4-HNE may also contribute to the decreased hepatocellular proliferation associated with ALD. Collectively, these results provide new information concerning the mechanisms whereby the modification of hepatic proteins by 4-HNE contributes to ALD. Published by Elsevier Ireland Ltd

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available