4.7 Article Proceedings Paper

FDH: An aldehyde dehydrogenase fusion enzyme in folate metabolism

Journal

CHEMICO-BIOLOGICAL INTERACTIONS
Volume 178, Issue 1-3, Pages 84-93

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2008.09.007

Keywords

Folate metabolism; 10-Formyltetrahydrofolate dehydrogenase; Aldehyde dehydrogenase; Functional domains; 4 '-Phosphopantetheine; Enzyme mechanism

Funding

  1. NCI NIH HHS [CA95030, R01 CA095030-05, R01 CA095030] Funding Source: Medline
  2. NIDDK NIH HHS [R01 DK054388-11, DK54388, R01 DK054388] Funding Source: Medline

Ask authors/readers for more resources

FDH (10-formyltetrahydrofolate dehydrogenase, Aldh1L1, EC 1.5.1.6) converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate and CO2 in a NADP(+)-dependent reaction. It is a tetramer of four identical 902 amino acid residue subunits. The protein subunit is a product of a natural fusion of three unrelated genes and consists of three distinct domains. The N-terminal domain of FDH (residues 1-310) carries the folate binding site and shares sequence homology and structural topology with other enzymes utilizing 10-formyl-THF as a substrate. In vitro it functions as 10-formyl-THF hydrolase, and evidence indicate that this activity is a part of the overall FDH mechanism. The C-terminal domain of FDH (residues 400-902) originated from an aldehyde dehydrogenase-related gene and is capable of oxidation of short-chain aldehydes to corresponding acids. Similar to classes 1 and 2 aldehyde dehydrogenases, this domain exists as a tetramer and defines the oligomeric structure of the full-length enzyme. The two catalytic domains are connected by an intermediate linker (residues 311-399), which is a structural and functional homolog of carrier proteins possessing a 4'-phosphopantetheine prosthetic group. In the FDH mechanism, the intermediate linker domain transfers a formyl, covalently attached to the sulfhydryl group of the phosphopantetheine arm, from the N-terminal domain to the C-terminal domain. The overall FDH mechanism is a coupling of two sequential reactions, a hydrolase and a formyl dehydrogenase, bridged by a substrate transfer step. In this mechanism, one domain provides the folate binding site and a hydrolase catalytic center to remove the formyl group from the folate substrate, another provides a transfer vehicle between catalytic centers and the third one contributes the dehydrogenase machinery further oxidizing formyl to CO2. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available