4.8 Review

Direct synthesis of ordered mesoporous carbons

Journal

CHEMICAL SOCIETY REVIEWS
Volume 42, Issue 9, Pages 3977-4003

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cs35301f

Keywords

-

Funding

  1. National Natural Science Foundation of China [20973096, 21073099]
  2. National Basic Research Program of China [2009CB623502]
  3. Program for Innovative Research Team in University [IRT0927]
  4. 111 project [B12015]
  5. Royal Academy of Engineering for a Research Exchanges with China and India Award

Ask authors/readers for more resources

Ordered mesoporous carbon materials have recently aroused great research interest because of their widespread applications in many areas such as adsorbents, catalysts and supports, gas storage hosts, and electrode materials. The direct synthesis strategy from organic-organic self-assembly involving the combination of polymerizable precursors and block copolymer templates is expected to be more flexible in preparing mesoporous carbons, compared with the traditional nanocasting strategy of complicated and high-cost procedures using mesoporous silica materials as the hard template. In this review, we present the fundamentals and recent advances related to the field of ordered mesoporous carbon materials from the direct synthesis strategy of block copolymer soft-templating, with a focus on their controllable preparation, modification and potential applications. Under the guidance of their formation mechanism, the preparation of ordered mesoporous carbons are discussed in detail by consulting different experimental conditions, including synthetic pathways, precursors, catalysts and templates. Both the mesopore size and morphology control are introduced. The potential applications of pure mesoporous carbons, nonmetallic-and metallic-modified mesoporous carbons, and some interpenetrating carbon-based composites are demonstrated. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of the ordered mesoporous carbons (232 references).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available