4.8 Review

Designs for life: protocell models in the laboratory

Journal

CHEMICAL SOCIETY REVIEWS
Volume 41, Issue 1, Pages 79-85

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cs15211d

Keywords

-

Ask authors/readers for more resources

Compartmentalization of primitive biochemical reactions within membrane-bound water microdroplets is considered an essential step in the origin of life. In the absence of complex biochemical machinery, the hypothetical precursors to the first biological cells (protocells) would be dependent on the self-organization of their components and physicochemical conditions of the environment to attain a basic level of autonomy and evolutionary viability. Many researchers consider the self-organization of lipid and fatty acid molecules into bilayer vesicles as a simple form of membrane-based compartmentalization that can be developed for the experimental design and construction of plausible protocell models. In this tutorial review, we highlight some of the recent advances and issues concerning the construction of simple cell-like systems in the laboratory. Overcoming many of the current scientific challenges should lead to new types of chemical bio-reactors and artificial cell-like entities, and bring new insights concerning the possible pathways responsible for the origin of life.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available