4.8 Review

X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity

Journal

CHEMICAL SOCIETY REVIEWS
Volume 39, Issue 12, Pages 4885-4927

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cs00082e

Keywords

-

Funding

  1. EU [MOFCAT-NMP4-CT-2006-033335, NanoMOF-228604]
  2. Compagnia di San Paolo
  3. Norwegian Research Council [160052/V30, 158552/441]

Ask authors/readers for more resources

The large unit cells, the enormous flexibility and variation in structural motifs of MOFs represent a big challenge in the characterization of MOF materials, particularly in cases where single crystal diffraction data are not available. In this critical review it is shown that in cases where only powder diffraction data are available additional structural information, particularly regarding local coordination within the inorganic cluster, are often mandatory in order to solve the structure. There are also cases where the inorganic cluster does not follow the symmetry of the overall structure. In such cases diffraction techniques will just see'' an average structure, missing the local structure: a lack that may be critical for understanding the specific properties of the material. In both cases, EXAFS spectroscopy is the tool that provides complementary structural information on the inorganic cluster and the way it binds to the ligand. Selected examples will show how EXAFS will be relevant in: (i) confirming the structure obtained from diffraction refinements; (ii) highlighting that the inorganic cornerstone has a lower symmetry with respect to that of the organic framework; (iii) obtaining the local structure of the inorganic cluster in the desolvated material when desolvation causes a partial loss of long range order; (iv) obtaining the local structure of the inorganic cluster in the desolvated material after coordination of a probe (or reactant) molecule, including cluster deformation upon molecule coordination and metal-molecule binding distance; (v) evidencing the presence of impurities in the form of amorphous extra-phases (339 references).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available