4.8 Review

Carbazole-based polymers for organic photovoltaic devices

Journal

CHEMICAL SOCIETY REVIEWS
Volume 39, Issue 7, Pages 2399-2410

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b915995a

Keywords

-

Ask authors/readers for more resources

Polymers based upon 2,7-disubstituted carbazole have recently become of great interest as electron-donating materials in organic photovoltaic devices. In this tutorial review the synthesis of such polymers and their relative performances in such devices are surveyed. In particular structure-property relationships are investigated and the potential for the rational design of materials for high efficiency solar cells is discussed. In the case of the 2,7-carbazole homopolymer it has been found that electron acceptors other than fullerenes produce higher energy conversion efficiencies. To get around possible problems with the build-up of charge density at the 3- and 6-positions and to improve the solar light harvesting ability of the polymers by reducing the bandgap, ladder-and step-ladder type 2,7-carbazole polymers have been synthesised. The fully ladderised polymers gave very poor results in devices, but efficiencies of over 1% have been obtained from a step-ladder polymer with a diindenocarbazole monomer unit. Donor-acceptor copolymers containing 2,7-carbazole donors and various electron-accepting comonomer units have been prepared. An efficiency of 6% has been reported from a device using such a copolymer and by suitable choice of the acceptor comonomer, polymers can be designed with potential theoretical power conversion efficiencies of 10%. While such efficiencies remain to be obtained, the results to date certainly suggest that carbazole-based polymers and copolymers are among the most promising materials yet proposed for obtaining high efficiency organic solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available