4.5 Review

Presynaptic Inhibition of Olfactory Sensory Neurons: New Mechanisms and Potential Functions

Journal

CHEMICAL SENSES
Volume 38, Issue 6, Pages 459-474

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/chemse/bjt018

Keywords

dynamic range; GABAB receptor; odor coding; perceptual filter; synaptic physiology

Funding

  1. National Institute on Deafness and Other Communication Disorders [R00 DC009442]

Ask authors/readers for more resources

Presynaptic inhibition is the suppression of neurotransmitter release from a neuron by inhibitory input onto its presynaptic terminal. In the olfactory system, the primary sensory afferents from the olfactory neuroepithelium to the brains olfactory bulb are strongly modulated by a presynaptic inhibition that has been studied extensively in brain slices and in vivo. In rodents, this inhibition is mediated by -amino butyric acid (GABA) and dopamine released from bulbar interneurons. The specialized GABAergic circuit is now well understood to include a specific subset of GAD65-expressing periglomerular interneurons that stimulate presynaptic GABA(B) receptors to reduce presynaptic calcium conductance. This inhibition is organized to permit the selective modulation of neurotransmitter release from specific populations of olfactory sensory neurons based on their odorant receptor expression, includes specialized microcircuits to create a tonically active inhibition and a separate feedback inhibition evoked by sensory input, and can be modulated by centrifugal projections from other brain regions. Olfactory nerve output can also be modulated by dopaminergic circuitry, but this literature is more difficult to interpret. Presynaptic inhibition of olfactory afferents may extend their dynamic range but could also create state-dependent or odorant-specific sensory filters on primary sensory representations. New directions exploring this circuits role in olfactory processing are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available