4.5 Article

Modification and Functional Inhibition of Regulator of G-Protein Signaling 4 (RGS4) by 4-Hydroxy-2-nonenal

Journal

CHEMICAL RESEARCH IN TOXICOLOGY
Volume 26, Issue 12, Pages 1832-1839

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/tx400212q

Keywords

-

Funding

  1. University of Iowa College of Pharmacy Dissertation Fellowship
  2. [NIHT32 GM067795]

Ask authors/readers for more resources

Oxidative stress has been implicated as a component of various pathologies including ischemia/reperfusion injury (IRI) and neurodegenerative diseases such as Parkinson's disease (PD) and schizophrenia. Similarly, regulator of G-protein signaling 4 (RGS4) has been implicated as an important player in each of these pathologies. RGS4, like other RGS proteins, is responsible for temporally regulating G-protein coupled receptor signaling by increasing the intrinsic GTPase activity of Go subunit of the heterotrimeric signaling complex. In this study we evaluated whether modification by 4-hydroxy-2-nonenal (4HNE), a common lipid peroxidation product, inhibits RGS4. Using immunoprecipitation, we first determined RGS4 modification was occurring in cells at concentrations of 4HNE within reported physiological conditions. Following this determination, we evaluated modification of RGS4 by 4HNE by both Western blot and mass spectrometry (MS). Once it was established that covalent modification occurred only on cysteine containing constructs, tryptic digest followed by mass spectrometry analysis revealed modification occurs at cysteine residues 71, 148, and 183. In order to determine the effect 4HNE had on RGS4 activity, a steady-state colorimetric assay was used to analyze the GAP activity of Delta 51-RGS4 as well as the cysteine null mutant. From the data, we determined that RGS4 activity can be modulated by 4HNE through modification at cysteine residues similar to previously reported small molecule inhibition of RGS4.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available