4.5 Article

Exposure and Kinetics of Polycyclic Aromatic Hydrocarbons (PAHs) in Cigarette Smokers

Journal

CHEMICAL RESEARCH IN TOXICOLOGY
Volume 25, Issue 4, Pages 952-964

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/tx300043k

Keywords

-

Funding

  1. National Institutes of Health [R25CA113710]
  2. National Cancer Institute [CA78603]
  3. National Institute on Drug Abuse [DA0277, DA12393]
  4. Flight Attendants Medical Research Institute
  5. State of California Tobacco Related Diseases Program [10RT-0215]

Ask authors/readers for more resources

Our study objectives were (1) to investigate the selectivity of polycyclic aromatic hydrocarbon (PAH) metabolites for tobacco smoke exposure and (2) to determine half-lives of PAH metabolites in smokers. There were 622 participants from the United States (US) and Poland, and of these, 70% were smokers. All subjects provided spot urine samples, and 125 smokers provided blood samples. Urinary PAR metabolite half-lives were determined in 8 smokers. In controlled hospital studies of 18 smokers, the associations between various measures of nicotine intake and urinary excretion of PAH metabolites were investigated. Plasma nicotine was measured by GC. LC-MS/MS was used to measure the plasma levels of cotinine and trans-3'-hydroxycotinine, and urine levels of nicotine and its metabolites, total 4-(methylnitrosamino)-1(3-pyridyl)-1-butanol (NNAL) and PAH metabolites (2-naphthol, 1-, 2-, and 3-hydroxyfluorenes, 1-, 2-, 3-, and 4-hydroxyphenanthrenes, and 1-hydroxypyrene). Regardless of smoking status, PAR metabolite excretion was higher in Polish subjects than in US subjects (p-values < 0.001). 1-Hydroxyfluorene exhibited the greatest difference between smokers and nonsmokers, with a 5-fold difference in Polish subjects and a 25-fold difference in US subjects, followed by 3- and 2-hydroxyfluorenes, 2-naphthol, and 1-hydroxypyrene. The differences for hydroxyphenanthrenes were small or nonsignificant. 1-Hydroxyfluorene had the highest correlation with urine nicotine equivalents (r = 0.77) and urine NNAL (r = 0.64). While the half-lives of PAR metabolites were <10 h in smokers, 1-hydroxyfluorene had the largest ratio of initial to terminal urine concentration (58.4 +/- 38.6, mean +/- SD) after smoking. Receiver Operating Characteristic (ROC) analysis of PAHs among Polish and US subjects further showed that hydroxyfluorenes are most highly discriminative of smokers from nonsmokers followed by 2-naphthol and 1-hydroxypyrene. In conclusion, hydroxyfluorenes, particularly 1-hydroxyfluorene, and 2-naphthol are more selective of tobacco smoke than 1-hydroxypyrene and hydroxyphenanthrenes. Characterization of hydroxyfluorene and 2-naphthol metabolites in urine may improve the characterization of PAHs from tobacco smoke and related disease risks among smokers and nonsmokers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available