4.5 Article

Particle-Induced Artifacts in the MTT and LDH Viability Assays

Journal

CHEMICAL RESEARCH IN TOXICOLOGY
Volume 25, Issue 9, Pages 1885-1892

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/tx3001708

Keywords

-

Funding

  1. National Institute of Environmental Health Sciences Superfund Basic Research Program [P42-ESO47050-01]
  2. Wood Calvert Chair of Engineering, University of California Berkeley

Ask authors/readers for more resources

In vitro testing is a common first step in assessing combustion-generated and engineered nanoparticle-related health hazards. Commercially available viability assays are frequently used to compare the toxicity of different particle types and to generate dose-response data. Nanoparticles, well-known for having large surface areas and chemically active surfaces, may interfere with viability assays, producing a false assessment of toxicity and making it difficult to compare toxicity data. The objective of this study is to measure the extent of particle interference in two common viability assays, the MTT reduction and the lactate dehydrogenase (LDH) release assays. Diesel particles, activated carbon, flame soot, oxidized flame soot, and titanium dioxide particles are assessed for interactions with the MTT and LDH assay under cell-free conditions. Diesel particles, at concentrations as low as 0.05 mu g/mL, reduce MTT. Other particle types reduce MTT only at a concentration of 50 mu g/mL and higher. The activated carbon, soot, and oxidized soot particles bind LDH to varying extents, reducing the concentration measured in the LDH assay. The interfering effects of the particles explain in part the different toxicities measured in human bronchial epithelial cells (16HBE14o). We conclude that valid particle toxicity assessments can only be assured after first performing controls to verify that the particles under investigation do not interfere with a specific assay at the expected concentrations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available