4.5 Article

Structure-Activity Comparison of the Cytotoxic Properties of Diethyl Maleate and Related Molecules: Identification of Diethyl Acetylenedicarboxylate as a Thiol Cross-Linking Agent

Journal

CHEMICAL RESEARCH IN TOXICOLOGY
Volume 24, Issue 1, Pages 81-88

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/tx100292n

Keywords

-

Funding

  1. College of Wooster
  2. Howard Hughes Medical Institute
  3. College's Sophomore Research Program

Ask authors/readers for more resources

Many alpha,beta-unsaturated carbonyl compounds are used in biochemical and medical research. Their biological effects are due in large part to their electrophilic properties, whereby they undergo reaction with nucleophilic sites in proteins and nucleic acids. Here, we describe a structure activity comparison of the cytotoxic properties of diethyl maleate (DEM) and closely related chemical analogs. All molecules that contained an alpha,beta-unsaturated carbonyl group were cytotoxic to human colorectal carcinoma cells, causing apoptotic cell death. However, related molecules lacking this chemical moiety were not cytotoxic. One of the molecules screened, diethyl acetylenedicarboxylate (DAD), was considerably more cytotoxic than DEM and other analogues. Induction of cell death by DAD was significantly decreased following preincubation of cells with N-acetylcysteine, suggesting that its reactivity with thiols in cells might account for its cytotoxicity. By use of a model thiol compound, it was found that DAD can undergo addition reactions with two equivalents of thiol. When the reactivity of DAD with proteins was explored, it was determined that DAD induces oligomerization of Gpx3p, a yeast glutathione peroxidase with highly reactive cysteine residues in its active site. Our results suggest that DAD functions as a protein thiol cross-linker, providing a potential chemical explanation for its cytotoxic potency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available