4.5 Article

Cellular Uptake of Platinum Nanoparticles in Human Colon Carcinoma Cells and Their Impact on Cellular Redox Systems and DNA Integrity

Journal

CHEMICAL RESEARCH IN TOXICOLOGY
Volume 22, Issue 4, Pages 649-659

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/tx800354g

Keywords

-

Funding

  1. DFG
  2. Ministry of Science, Research and the Arts
  3. Landesstiftung foundation of Baden-Wurttemberg [Az: 23-720.431-1.8/1]

Ask authors/readers for more resources

Supercritical fluid reactive deposition was used for the deposition of highly dispersed platinum nanoparticles with controllable metal content and particle size distribution on beta-cyclodextrin. The average particle size and size distribution were steered by the precursor reduction conditions, resulting in particle preparations <20, <100, and >100 nm as characterized by transmission electron microscopy and scanning electron microscopy (SEM). These particle preparations of different size distributions were used to address the question as to whether metallic platinum particles are able to invade cells of the gastrointestinal tract as exemplified for the human colon carcinoma cell line HT29 and thus affect the cellular redox status and DNA integrity. Combined focused ion beam and SEM demonstrated that platinum nanoparticles were taken up into HT29 cells in their particulate form. The chemical composition of the particles within the cells was confirmed by energy-dispersive X-ray spectroscopy. The potential influence of platinum nanoparticles on cellular redoxsystems was determined in the DCF assay, on the translocation of Nrf-2 and by monitoring the intracellular glutathione (GSH) levels. The impact on DNA integrity was investigated by single cell gel electrophoresis (comet assay) including the formation of sites sensitive to formamidopyrimidine-DNA-glycosylase. Platinum nanoparticles were found to decrease the cellular GSH level and to impair DNA integrity with a maximal effect at 1 ng/cm(2). These effects were correlated with the particle size in an inverse manner and were enhanced with increasing incubation time but appeared not to be based on the formation of reactive oxygen species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available