4.5 Article

In Vitro Replication and Repair Studies of Tandem Lesions Containing Neighboring Thymidine Glycol and 8-Oxo-7,8-dihydro-2′-deoxyguanosine

Journal

CHEMICAL RESEARCH IN TOXICOLOGY
Volume 22, Issue 3, Pages 574-583

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/tx8003449

Keywords

-

Funding

  1. National Institutes of Health [R01 CA101864]

Ask authors/readers for more resources

Reactive oxygen species can induce the formation of tandem DNA lesions. We recently showed that the treatment of calf thymus DNA with Cu2+/H2O2/ascorbate could result in the efficient formation of a tandem lesion where a 5,6-dihydroxy-5,6-dihydrothymidine (or thymidine glycol) is situated on the 5' side of an 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). In the present study, we assessed how the 5'-Tg-(8-oxodG)-3' and 5'-(8-oxodG)-Tg-3' tandem lesions are replicated by purified DNA polymerases and how they are recognized by base excision repair enzymes. Our results revealed that the tandem lesions blocked primer extension mediated by the Menow fragment and yeast polymerase eta more readily than when the Tg or 8-oxodG was present alone. The mutagenic properties of Tg or 8-oxodG differed while they were present alone or in tandem. Moreover, the human 8-oxoguanine-DNA glycosylase (hOGG1)-mediated cleavage of 8-oxodG was compromised considerably by the presence of a neighboring 5' Tg, whereas the presence of Tg as the adjacent 3' nucleoside enhanced 8-oxodG cleavage by hOGG1. The efficiency for the cleavage of Tg by endonuclease III was not affected by the presence of an adjoining 8-oxodG. These results supported the notion that the replication and repair of tandem single-nucleobase lesions depend on the types of lesions involved and their spatial arrangement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available