4.5 Article

Biomarkers of furan exposure by metabolic profiling of rat urine with liquid chromatography-tandem mass spectrometry and principal component analysis

Journal

CHEMICAL RESEARCH IN TOXICOLOGY
Volume 21, Issue 3, Pages 761-768

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/tx7004212

Keywords

-

Ask authors/readers for more resources

Furan has been found in a number of heated food items and is carcinogenic in the liver of rats and mice. Estimates of human exposure on the basis of concentrations measured in food are not reliable because of the volatility of furan. A biomarker approach is therefore indicated. We searched for metabolites excreted in the urine of male Fischer 344 rats treated by oral gavage with 40 mg of furan per kg of body weight. A control group received the vehicle oil only. Urine collected over two 24-h periods both before and after treatment was analyzed by a column-switching LC-MS/MS method. Data were acquired by a full scan survey scan in combination with information dependent acquisition of fragmentation spectra by the use of a linear ion trap. Areas of 449 peaks were extracted from the chromatograms and used for principal component analysis (PCA). The first principal component fully separated the samples of treated rats from the controls in the first post-treatment sampling period. Thirteen potential biomarkers selected from the corresponding loadings plot were reanalyzed using specific transitions in the MRM mode. Seven peaks that increased significantly upon treatment were further investigated as biomarkers of exposure. MS/MS information indicated conjugation with glutathione on the basis of the characteristic neutral loss of 129 for mercapturates. Adducts with the side chain amino group of lysine were characterized by a neutral loss of 171 for N-acetyl-L-lysine. Analysis of products of in vitro incubations of the reactive furan metabolite cis-2-butene-1,4-dial with the respective amino acid derivatives supported five structures, including a new 3-methylthio-pyrrole metabolite probably formed by P-lyase reaction on a glutathione conjugate, followed by methylation of the thiol group. Our results demonstrate the potential of comprehensive mass spectrometric analysis of urine combined with multivariate analyses for metabolic profiling in search of biomarkers of exposure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available