4.7 Article

Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-Like reaction in water

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 296, Issue -, Pages 128-137

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2015.04.014

Keywords

Cobalt manganese oxides; Peroxymonosulfate; Fenton-like; Organic pollutant; Sulfate radical

Funding

  1. Anhui Provincial Natural Science Foundation [1308085MB21]
  2. National Natural Science Foundation of China [51372062]
  3. Technology Foundation for Selected Overseas Chinese Scholar of Anhui Province [2013AHST0415]
  4. State Key Laboratory of Materials-Oriented Chemical Engineering [KL13-12]
  5. Fundamental Research Funds for the Central Universities [2012HGQC0010]
  6. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
  7. Australian Research Council [DP110103699]

Ask authors/readers for more resources

A series of CoxMn3-xO4 particles as Fenton-like solid catalysts were synthesized, and their catalytic performance in oxidative degradation of organic dye compounds in water was investigated. The surface morphology and structure of the CoxMn3-xO4 catalysts were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that, as an oxide composite of Co and Mn elements, CoMn2O4 showed much stronger catalytic activity in peroxymonosulfate (PMS) oxidation than Co3O4, Mn2O3, and their physical mixture. Typically, the uses of 0.02 g/dm(3) CoMn2O4 and 0.2 g/dm(3) PMS yielded a nearly complete removal of Rhodamine B (0.03 g/dm(3)) in 80 min at 25 degrees C. The efficiency of Rhodamine B decomposition increased with increasing temperature (15-55 degrees C), but decreased with the increase of fulvic acid concentration (0-0.08 g/dm(3)). Furthermore, CoMn2O4 could maintain its catalytic activity in the repeated batch experiments. Moreover, HO center dot and SO4 center dot- radicals participating in the process were evidenced using quenching experiments, and a rational mechanism was proposed. PMS oxidation with CoMn2O4 is an efficient technique for remediation of organic contaminants in wastewater. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available