4.6 Article

Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer

Journal

CHEMICAL PHYSICS LETTERS
Volume 571, Issue -, Pages 1-15

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cplett.2013.04.014

Keywords

-

Funding

  1. US National Science Foundation (NSF) [CHE-0960074, CHE-0848827]
  2. Polish National Science Centre [DEC/2011/02/A/ST2/00298]
  3. NSF, MERCURY high-performance computer consortium [CHE 0116435, CHE-0521063, CHE-0849677]
  4. Texas Advanced Computing Center (TACC) [TG CHE090095]
  5. National Energy Research Scientific Computing Center
  6. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
  7. Swiss National Science Foundation [144907]
  8. Direct For Mathematical & Physical Scien
  9. Division Of Chemistry [0960074, 1213521, 1229354] Funding Source: National Science Foundation

Ask authors/readers for more resources

Over the recent years chirped-pulse, Fourier-transform microwave (CP-FTMW) spectrometers have changed the scope of rotational spectroscopy. The broad frequency and large dynamic range make possible structural determinations in molecular systems of increasingly larger size from measurements of heavy atom (C-13, N-15, O-18) isotopes recorded in natural abundance in the same spectrum as that of the parent isotopic species. The design of a broadband spectrometer operating in the 2-8 GHz frequency range with further improvements in sensitivity is presented. The current CP-FTMW spectrometer performance is benchmarked in the analyses of the rotational spectrum of the water heptamer, (H2O)(7), in both 2-8 GHz and 6-18 GHz frequency ranges. Two isomers of the water heptamer have been observed in a pulsed supersonic molecular expansion. High level ab initio structural searches were performed to provide plausible low-energy candidates which were directly compared with accurate structures provided from broadband rotational spectra. The full substitution structure of the most stable species has been obtained through the analysis of all possible singly-substituted isotopologues ((H2O)-O-18 and HDO), and a least-squares r(m)((1)) geometry of the oxygen framework determined from 16 different isotopic species compares with the calculated O-O equilibrium distances at the 0.01 angstrom level. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available