4.6 Article

Charge carrier density in Li-intercalated graphene

Journal

CHEMICAL PHYSICS LETTERS
Volume 534, Issue -, Pages 29-33

Publisher

ELSEVIER
DOI: 10.1016/j.cplett.2012.03.005

Keywords

-

Ask authors/readers for more resources

The electronic structures of bulk C6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0001) are studied using density functional theory. Our estimate of Young's modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0001) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0001). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available