4.6 Article

Dependence of transport property of graphene nanoribbon on contacts: Electron-hole symmetry and conductance at the Dirac point

Journal

CHEMICAL PHYSICS LETTERS
Volume 516, Issue 4-6, Pages 225-229

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cplett.2011.10.007

Keywords

-

Ask authors/readers for more resources

Our investigation of the transport properties in graphene nanoribbon's (GNR) between quantum wire contact and decoupled chains contact confirms general predictions for the transport through GNR for specific geometries. We found that electron-hole (e-h) symmetry depends sensitively on the contact and interface. For quantum wire contacts, the breaking of e-h symmetry occurs in armchair GNR due to odd-numbered ring at the interface, and at Dirac point the maximal transmission corresponds to the momentum k(y) = 2 pi/3 root 3a (a = 0.142 angstrom). The spatial density of states of armchair GNR is shown. Furthermore, the conductance at Dirac point is independent of contacts with dense modes. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available