4.7 Article

Diffusion and leachability index studies on stabilization of chromium contaminated soil using fly ash

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 297, Issue -, Pages 52-58

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2015.04.045

Keywords

Calcium polysulfide; Chromium; Leachability index; Solidification and stabilization; Toxicity Characteristic Leaching Procedure

Funding

  1. Tamil Nadu Pollution Control Board, Chennai

Ask authors/readers for more resources

Experiments were performed to establish a feasible treatment process for the solidification and stabilization (S/S) of soil contaminated by leaching of Cr(VI) from Chromite ore processing residue (COPR). Reduction of the highly mobile Cr(VI) was performed using calcium polysulfide (CaS5) with a dosage of 3 times the molar stoichiometric ratio for the initial concentration of Cr(VI) present in the chromium contaminated soil (CCS). The CCS was solidified and stabilized (S/S) using fly ash (FA) in various proportions i.e., 1:1, 1:2, 1:3 (FA: CCS) with and without using reducing agent i.e., CaS5. Leachability tests such as Toxicity Characteristic Leaching Procedure (TCLP) and semi-dynamic long term leachability tests indicated that the CaS5 was effective in reduction of Cr(VI) followed by the S/S process. Leachability Index was derived from the results of the semi-dynamic long term leachability tests and was between 8 and 9, indicating that FA is an effective treatment for disposal into secured landfills for CCS. The characteristic compressive strength of the CaS5 treated CCS with FA mortar blocks were between 24.47 and 40.49 kg/cm(2). Considering the cost of CaS5 and FA, a total expenditure of Rs. 7826 i.e., US $ 130.4 would be required for remediation of one tonne of CCS. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available