4.7 Article

Effects of Cu exposure on enzyme activities and selection for microbial tolerances during swine-manure composting

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 283, Issue -, Pages 512-518

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2014.09.061

Keywords

Cu; Composting; Microorganisms; Enzyme activity; Pollution-induced community tolerance (PICT)

Funding

  1. Natural Science Foundation of China [21277013, 20977010]
  2. Special Fund for Environmental Protection Research in the Public Interest [201409040]

Ask authors/readers for more resources

A simulated experiment of aerobic composting was conducted on swine manure to evaluate the effects of Cu at two exposure levels (200 and 2000 mg kg(-1), corresponding to low-Cu and high-Cu treatments, respectively) on the activity of microorganisms. In addition, the microbial pollution-induced community tolerance (PICT) to Cu and co-tolerance to selected antibiotics (tylosin and vancomycin) in the composted products were also investigated using the Biolog Ecoplates (TM) method. It was demonstrated that the enzymatic activities were significantly inhibited by the high-Cu treatment, with maximal inhibition rates of 56.8% and 65.1% for urease and dehydrogenase, respectively. In response to the PICT test, the IC50 (half-maximal inhibition concentrations) values on the microorganisms in the high-Cu-treated composts were clearly higher than those in the low-Cu-treated and control composts, for the toxicity tests on both Cu and antibiotics, including tylosin and vancomycin. The data demonstrated that high-Cu exposure to the microbial community during the composting not only selected for Cu resistance but also co-selected for antibiotic resistance, which was of significance because the tolerance might be transferred to the soil after the land application of composted manure. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available