4.7 Article

Conducting polypyrrole films as a potential tool for electrochemical treatment of azo dyes in textile wastewaters

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 283, Issue -, Pages 164-170

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2014.07.038

Keywords

Electrochemical treatment; Dye entrapment-liberation; Polypyrrole films; Acid Red 1; Environmentally friendly treatment

Ask authors/readers for more resources

In this paper, we demonstrate conducting polypyrrole films as a potential green technology for electrochemical treatment of azo dyes in wastewaters using Acid Red 1 as a model analyte. These films were synthesised by anodically polymerising pyrrole in the presence of Acid Red 1 as a supporting electrolyte. In this way, the anionic Acid Red 1 is electrostatically attracted to the cationic polypyrrole backbone formed to maintain electroneutrality, and is thus entrapped in the film. These Acid Red 1-entrapped polypyrrole films were characterised by electrochemical, microscopic and spectroscopic techniques. Based on a two-level factorial design, the solution pH, Acid Red 1 concentration and polymerisation duration were identified as significant parameters affecting the entrapment efficiency. The entrapment process will potentially aid in decolourising Acid Red 1-containing wastewaters. Similarly, in a cathodic process, electrons are supplied to neutralise the polypyrrole backbone, liberating Acid Red 1 into a solution. In this work, following an entrapment duration of 480 min in 2000 mg L-1 Acid Red 1, we estimated 21% of the dye was liberated after a reduction period of 240 min. This allows the recovery of Acid Red 1 for recycling purposes. A distinctive advantage of this electrochemical Acid Red 1 treatment, compared to many other techniques, is that no known toxic by-products are generated in the treatment. Therefore, conducting polypyrrole films can potentially be applied as an environmentally friendly treatment method for textile effluents. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available