4.7 Article

Multiple age components in individual molybdenite grains

Journal

CHEMICAL GEOLOGY
Volume 300, Issue -, Pages 55-60

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chemgeo.2012.01.011

Keywords

Molybdenite; Re-Os dating; Growth episodes; Geochemical analysis

Ask authors/readers for more resources

Re-Os geochronology of fractions composed of unsized, coarse, and fine molybdenite from a pod of unusual monazite-xenotime gneiss within a granulite facies paragneiss, Hudson Highlands, NY, yielded dates of 950.5 +/- 2.5, 953.8 +/- 2.6, and 941.2 +/- 2.6 Ma, respectively. These dates are not recorded by co-existing zircon, monazite, or xenotime. SEM-BSE imagery of thin sections and separated grains reveals that most molybdenite grains are composed of core and rim plates that are approximately perpendicular. Rim material invaded cores, forming irregular contacts, probably reflecting dissolution/reprecipitation. EPMA and LA-ICP-MS analyses show that cores and rims have different trace element concentrations (for example, cores are relatively enriched in W). On the basis of inclusions of zircon with metamorphic overgrowths, we conclude that molybdenite cones and rims formed after high-grade regional metamorphism. The discovery of cores and rims in individual molybdenite grains is analogous to multi-component U-Pb geochronometers such as zircon, monazite, and titanite; thus, molybdenite should be carefully examined before dating to ensure that the requirement of age homogeneity is fulfilled. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available