4.7 Article

Fluid evolution in zoned Cordilleran polymetallic veins - Insights from microthermometry and LA-ICP-MS of fluid inclusions

Journal

CHEMICAL GEOLOGY
Volume 281, Issue 3-4, Pages 293-304

Publisher

ELSEVIER
DOI: 10.1016/j.chemgeo.2010.12.016

Keywords

Fluid inclusions; Cordilleran; Polymetallic vein; Fluid evolution; Metal zonation; LA-ICP-MS

Funding

  1. Swiss National Sciences Foundation [20020-108026]

Ask authors/readers for more resources

Fluid inclusion analysis through the paragenetic sequence of one symmetrically zoned vein sample is used to reconstruct the P-T-X fluid evolution of a porphyry intrusion-related Cordilleran polymetallic vein from Morococha, central Peru. Results record an evolution from initial deep-seated precipitation of quartz-pyrite and base metal sulphides to final near-surface deposition of carbonates, demonstrating progressive mineralisation during uplift and erosion. This is the first detailed study addressing meso- to epithermal Zn-Pb-Ag-Cu-rich ore in a magmatic-hydrothermal system by combination of fluid inclusion microthermometry with laser ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS) quantifying metal, as well as sulphur concentrations in the evolving hydrothermal fluid. Scanning electron microscopy cathodoluminescence (SEM-CL) imaging of quartz and detailed transmitted- and reflected-light petrography provide textural evidence that early, moderately saline (4-5 wt.% NaCl eq.) and CO2-bearing fluids with homogenisation temperatures of 340 degrees-380 degrees C precipitate Cu-bearing minerals. In this open hydrothermal system the fluids record decreasing salinities, CO2-contents and temperatures, while Zn-, Pb-, and Ag-sulphides precipitate. Fluids related to early precipitation in the vein have metal contents of several 1000 mu g/g S and Fe, over 1000 mu g/g Cu, 100 mu g/g Pb, 10 mu g/g Ag, and several 100 mu g/g Zn. Sulphur concentrations in the fluid are sufficiently high to precipitate all metals in solution as sulphides. The latest generation of fluid inclusions associated with abundant carbonate precipitation in the centre of the vein has homogenisation temperatures ranging from 260 degrees to 220 degrees C, low metal concentrations, and no measurable CO2. During vein formation, cooling and several kilometres of erosion resulted in telescoping of consecutively precipitated mineral assemblages. The deep input fluid dominating in the early vein stage is interpreted to be of magmatic origin, most likely a single phase magmatic fluid of intermediate salinity and density. It cooled to an aqueous liquid, separated minor CO2-rich vapour, and was eventually diluted by meteoric water in the late stages of vein formation when the progressively eroded land surface was only several hundred meters above the vein location. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available