4.7 Article

Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis

Journal

CHEMICAL GEOLOGY
Volume 277, Issue 1-2, Pages 137-148

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chemgeo.2010.07.016

Keywords

LIBS; Quantitative analysis; Elemental analysis; Bulk analysis; ChemCam; Mars

Funding

  1. NASA [NNG06GH35G, NNX09AL21G]
  2. LANL
  3. NASA [108650, NNX09AL21G] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Laser-induced breakdown spectroscopy (LIBS) is demonstrated as a quantitative technique for geochemical analysis. This study demonstrates the applicability of LIBS to bulk elemental analysis of igneous rock powders. LIBS spectra of 100 igneous rocks with highly varying compositions were acquired at 9 m standoff distance under Mars atmospheric conditions. LIBS spectra were modeled using partial least squares regressions to predict major element compositions. A series of comparative tests determined the most effective methodologies for preprocessing of spectral and compositional data, and choice of calibration set. In the best cases, calculated 1-sigma errors are 1.6 wt.% SiO2, 1.5 wt.% Al2O3, 0.4 wt.% TiO2, 1.2 wt.% Fe2O3T, 1.6 wt.% MgO, 0.02 wt.% MnO, 1.1 wt.% CaO, 0.5 wt.% Na2O, 0.2 wt.% P2O5, and 0.4 wt.% K2O, with totals near 100%. The largest improvement came as a result of scaling the elemental distributions to equalize the ranges of variability. Optimal predictions for this data set were produced with calibration set compositions input as weight % oxides and not atomic fractions. Predictions were also improved when calibration sets represented the smallest range of compositional variability possible, and completely encompassed the compositional range encountered. Multiple calibration sets relevant to different rock types are preferred over a single all-encompassing calibration set. Baseline removal and transforming spectral data by their first derivative do not improve predictions and can even have negative effects. These results are directly applicable to spectra that will be acquired by the ChemCam experiment on Mars Science Laboratory, but also apply more broadly to terrestrial LIBS applications. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available