4.2 Article

Afferent Innervation, Muscle Spindles, and Contractures Following Neonatal Brachial Plexus Injury in a Mouse Model

Journal

JOURNAL OF HAND SURGERY-AMERICAN VOLUME
Volume 40, Issue 10, Pages 2007-2016

Publisher

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1016/j.jhsa.2015.07.008

Keywords

Afferent innervation; brachial plexus; contracture; ErbB signaling; muscle spindle

Funding

  1. American Foundation for Surgery of the Hand

Ask authors/readers for more resources

Purpose We used an established mouse model of elbow flexion contracture after neonatal brachial plexus injury (NBPI) to test the hypothesis that preservation of afferent innervation protects against contractures and is associated with preservation of muscle spindles and ErbB signaling. Methods A model of preganglionic C5 through C7 NBPI was first tested in mice with fluorescent axons using confocal imaging to confirm preserved afferent innervation of spindles despite motor end plate denervation. Preganglionic and postganglionic injuries were then created in wild-type mice. Four weeks later, we assessed total and afferent denervation of the elbow flexors by musculocutaneous nerve immunohistochemistry. Biceps muscle volume and cross-sectional area were measured by micro computed tomography. An observer who was blinded to the study protocol measured elbow flexion contractures. Biceps spindle and muscle fiber morphology and ErbB signaling pathway activity were assessed histologically and immunohistochemically. Results Preganglionic and postganglionic injuries caused similar total denervation and biceps muscle atrophy. However, after preganglionic injuries, afferent innervation was partially preserved and elbow flexion contractures were significantly less severe. Spindles degenerated after postganglionic injury but were preserved after preganglionic injury. ErbB signaling was inactivated in denervated spindles after postganglionic injury but ErbB signaling activity was preserved in spindles after preganglionic injury with retained afferent innervation. Preganglionic and postganglionic injuries were associated with upregulation of ErbB signaling in extrafusal muscle fibers. Conclusions Contractures after NBPI are associated with muscle spindle degeneration and loss of spindle ErbB signaling activity. Preservation of afferent innervation maintained spindle development and ErbB signaling activity, and protected against contractures. Clinical relevance Pharmacologic modulation of ErbB signaling, which is being investigated as a therapy for congestive heart failure, may be able to recapitulate the protective effects of afferent innervation in spindle development and contracture prevention. Muscle spindle preservation may also have implications in proprioception and motor learning, both of which are impaired in NBPI. (J Hand Surg Am. 2015;40(10):2007-2016. Copyright (C) 2015 by the American Society for Surgery of the Hand. All rights reserved.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available