4.7 Review

Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton

Journal

CHEMICAL GEOLOGY
Volume 264, Issue 1-4, Pages 266-280

Publisher

ELSEVIER
DOI: 10.1016/j.chemgeo.2009.03.011

Keywords

Granulite; Pyroxenite; Lower crustal xenolith; Lithospheric evolution; Paleogene underplating; North China Craton

Ask authors/readers for more resources

In situ U-Pb and Hf-isotope systematics of zircons, mineral chemistry of silicates and whole-rock major-element, trace-element and platinum-group element (PGE) data are reported for five mafic xenoliths (granulites and pyroxenite) in the Hannuoba Cenozoic basalts, North China. Temperature estimates of 859886 degrees C suggest that these xenoliths are derived from the lower crust The whole-rock compositions of the xenoliths show weakly negative Eu anomalies (delta Eu = 0.67-0.95), high SiO2/Al2O3 (5.80-13.8), low Ir (0.10-0.29 ppb), and wide ranges of Ni (4.5-235 ppm) and La/Nb (1.70-7.64). Most zircons in these samples are structureless and give Paleogene (44.5-47.3 Ma) U-Pb ages; minor populations have Early Mesozoic (210-220 Ma), Late Mesozoic (90 Ma) and Neogene (14 Ma) ages. The fractionation of pyroxene and plagioclase controlled the petrogenesis of the xenoliths, which are interpreted as the products of basaltic underplating and fractionation (cumulates) in Paleogene time (45-47 Ma), with assimilation of some older intermediate crustal components. The Paleogene underplating corresponds in time to lithosphere-scale extension in the North China Craton, leading to the widespread formation of sedimentary basins. Most Paleogene zircons have positive epsilon(Hf) (up to + 13.2) with uniform T-DM (0.46-0.50 Ga), whereas most Mesozoic zircons have negative epsilon(Hf); this evolution suggests a temporal decrease in the degree of crustal assimilation during the extension of the lithosphere. In addition to complex modification in Early and Late Mesozoic times, the thermal event related to the eruption of the host magmas (ca 14 Ma) also reheated the lower crust beneath the North China Craton. (c) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available