4.7 Review

The nuclear field shift effect in chemical exchange reactions

Journal

CHEMICAL GEOLOGY
Volume 267, Issue 3-4, Pages 139-156

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chemgeo.2009.06.015

Keywords

Nuclear field shift; Mass-independent; Isotope fractionation; Chemical exchange

Ask authors/readers for more resources

Mass-independent isotope fractionations found in laboratory-scale chemical exchange experiments are reviewed. The classic theory of stable isotope fractionation in chemical exchange reactions has been established by Bigeleisen, Mayer, and Urey in 1947. In 1996, the conventional mass-dependent theory was expanded by Bigeleisen to include a mass-independent term named the nuclear field shift effect. The nuclear field shift is an isotope shift in orbital electrons, which results from the isotopic difference in nuclear size and shape. Since the revised theory was proposed, the mass-independent isotope fractionation of various elements, (e.g., Ti, Cr, Zn, Sr, Mo, Ru, Cd, Sn, Te, Ba, Nd, Sm, Gd, Yb, and U), found in chemical exchange systems has been successfully explained as the nuclear field shift effect. In this review article, from both theoretical and experimental viewpoints, origins of mass-independent isotope effects are discussed. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available