4.6 Article

Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semi-interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water-ethanol mixtures

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 64, Issue 23, Pages 4908-4918

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2009.07.028

Keywords

Pervaporation; Natural rubber; Poly(vinyl alcohol); Zeolite 4A; Mixed matrix membrane

Funding

  1. Office of the Higher Education Commission
  2. Ministry of Education, Thailand
  3. Thailand Research Fund (TRF) [MRG5180289, RDG4950118]
  4. Integrated Nanotechnology Research Center (NaNoKKU) at Khon Kaen University

Ask authors/readers for more resources

The pervaporation dehydration of water-ethanol mixtures was investigated using the mixed matrix (MM) membranes prepared from natural rubber (NR) and crosslinked poly(vinyl alcohol) (PVA) semi-IPN embedded with the zeolite 4A. With the presence of NR as well as zeolite, the swelling of MM membranes in water was effectively suppressed. Examined by DSC, the non-freezing bound water in the MM membranes was found decreasing with more zeolite loading because the water-polymer interaction is diminishing. The sorption study of MM membranes revealed a preferential sorption to water with improved water sorption selectivity as increasing the zeolite loading. For pervaporation at 5 vol% water in feed, the reversed trade-off with respect to the zeolite loading was encountered such that the total permeation flux increased along with an enhancement of the water separation factor. For higher feed water concentration, despite the greater total permeation flux, the separation factor was reduced owing to the extensive swelling of the polymer matrix. The temperature dependency of the partial water and ethanol fluxes followed the Arrhenius relationship and the estimated activation energies for water flux were lower than those of the ethanol flux, suggesting that the developed MM membranes are highly water selective. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available