4.6 Article

Modelling and simulation of hydrogen permeation through supported Pd-alloy membranes with a multicomponent approach

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 63, Issue 8, Pages 2149-2160

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2008.01.009

Keywords

hydrogen permeation; Pd-based supported membranes

Ask authors/readers for more resources

Hydrogen transport in Pd-based supported membranes was described by means of a model considering several elementary steps of the permeation process, improving what done by Ward and Dao [1999. Model of hydrogen permeation behavior in palladium membranes. Journal of Membrane Science 153 (2), 211-231] for self-supported membranes. The model includes the external mass transfer in the multicomponent gaseous phases on both sides of the membrane, described by the Stefan-Maxwell equations. The transport of the multicomponent mixture in the multilayered porous support was also considered and described by means of the dusty gas model, which takes into account Knudsen, Poiseuille and ordinary diffusion. The diffusion in the Pd-alloy layer is modeled by the irreversible thermodynamics theory, taking the hydrogen chemical potential as the driving force of the diffusion in the metallic bulk. The interfacial phenomena (adsorption, desorption, transition from Pd-based surface to Pd-based bulk and vice-versa) were described by the same expressions used by Ward and Dao (1999). Thicknesses of I and 10 mu m are considered for the Pd-alloy layer. The asymmetric support consists of five layers, each one characterized by a specific thickness and mean pore diameter. The model separates the permeation steps and consequently their influence, quantifying the relative resistances offered by each of them. Comparison with some experimental data in several conditions in the literature shows a good agreement. The developed tool is able to describe hydrogen transport through a supported Pd-based membrane, recognizing the rate-determining steps (e.g., diffusion in the metallic bulk or in the porous support) involved in the permeation. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available