4.6 Article

Segregation in polydisperse fluidized beds: Validation of a multi-fluid model

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 63, Issue 1, Pages 272-285

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2007.09.038

Keywords

multi-phase flow; fluidization; segregation; polydispersivity; solids mixing; direct quadrature method of moments (DQMOM)

Ask authors/readers for more resources

In many industrial-scale fluidized-bed reactors, particle mixing and segregation play an important role in determining reactor performance. Detailed information about the particle size distribution (PSD) throughout the bed at different operating conditions is crucial for design and scale up of practical systems. In this work, a multi-fluid model based on the Euler-Euler approach and the direct quadrature method of moments (DQMOM) is used to describe particle segregation, and the model predictions are validated with available experimental and simulation data. For binary mixtures, multi-fluid simulations are compared with digital image analysis experiments for beds of glass beads. By properly defining the solid-solid drag force, the multi-fluid model can reproduce the segregation rate found experimentally for different flow conditions with binary mixtures. Segregation phenomena in gas-solid fluidized beds with a continuous PSD are also investigated. Here, the multi-fluid simulations are compared with discrete particle simulations (DPS). Using the moments of the PSD from DPS, the weights and abscissas used in DQMOM are initialized in the multi-fluid model. The segregation rate and the local moments of the PSD predicted by the multi-fluid model are compared to the DPS results. The dependence of the results on the number of DQMOM nodes is also investigated. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available