4.6 Article Proceedings Paper

Nonlinear multiscale modelling for fault detection and identification

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 63, Issue 8, Pages 2252-2266

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2008.01.022

Keywords

multiresolution analysis; kernel principal component analysis; fault detection and diagnosis; multivariate statistical process control; multiscale kernel principal component analysis

Ask authors/readers for more resources

In order to detect abnormal events at different scales, a number of multiscale multivariate statistical process control (MSPC) approaches which combine a multivariate linear projection model with multiresolution analysis have been suggested. In this paper, a new nonlinear multiscale-MSPC method is proposed to address multivariate process performance monitoring and in particular fault diagnostics in nonlinear processes. A kernel principal component analysis (KPCA) model, which not only captures nonlinear relationships between variables but also reduces the dimensionality of the data, is built with the reconstructed data obtained by performing wavelet transform and inverse wavelet transform sequentially on measured data. A guideline is given for both off-line and on-line implementations of the approach. Two monitoring statistics used in multiscale KPCA-based process monitoring are used for fault detection. Furthermore, variable contributions to monitoring statistics are also derived by calculating the derivative of the monitoring statistics with respect to the variables. An intensive simulation study on a continuous stirred tank reactor process and a comparison of the proposed approach with several existing methods in terms of false alarm rate, missed alarm rate and detection delay, demonstrate that the proposed method for detecting and identifying faults outperforms current approaches. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available