4.7 Article

Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): Synthesis and adsorption studies

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 241, Issue -, Pages 175-183

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2013.12.051

Keywords

Cellulose; Composite; Cr(VI); Adsorption; Equilibrium

Funding

  1. National Natural Science Foundation of China [21106162, 51090382]
  2. National Key Natural Science Foundation of China [21136009]

Ask authors/readers for more resources

A novel amino-functionalized magnetic cellulose composite was prepared by a process involving: (1) synthesis of magnetic silica nanoparticles using the co-precipitation method followed by the hydrolysis of sodium silicate, (2) coating with cellulose through the regeneration of cellulose dissolved in 7 wt% NaOH/12 wt% urea aqueous solvent, (3) grafting of glycidyl methacrylate using cerium initiated polymerization and (4) ring-opening reaction of epoxy groups with ethylenediamine to yield amino groups. Once generated, the resulting composite was tested for its ability to remove Cr(VI) from an aqueous solution in batch experiments. The results demonstrated that Cr(VI) adsorption was highly pH dependent. The optimized pH value was 2.0. The adsorption isotherms of the adsorbent fit the Langmuir model, with the maximum adsorption capacity of 171.5 mg/g at 25 degrees C. The adsorption rate was considerably fast, and the adsorption reached equilibrium within 10 min. The obtained thermodynamic parameters showed that the adsorption of Cr(VI) onto the adsorbent was an exothermic and spontaneous process. In addition, the Cr(VI) ions could be effectively desorbed using a 0.1 mol/L NaOH solution and the adsorbent exhibited a good reusability. The composite material should be a promising adsorbent for Cr(VI) removal, with the advantages of high adsorption capacity, rapid adsorption rate and convenient recovery under magnetic field. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available