4.7 Article

Heterogeneous Fenton oxidation of catechol and 4-chlorocatechol catalyzed by nano-Fe3O4: Role of the interface

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 258, Issue -, Pages 433-441

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2014.07.063

Keywords

Heterogeneous Fenton; Nano-Fe3O4; Interface; ATR-FTIR; Eley-Rideal mechanism

Funding

  1. National Basic Research Program (973 Program) [2011CB933704]
  2. National Natural Science Foundation of China [21107125, 51221892, 41201498]
  3. National Natural Science Funds for Distinguished Young Scholar [51025830]

Ask authors/readers for more resources

The nano-Fe3O4 catalyzed Fenton oxidations of catechol and 4-chlorocatechol in aqueous solution were comparably investigated to elucidate the interface reaction mechanism of the heterogeneous Fenton reactions. Nano-Fe3O4 were synthesized as quasi-spherical particles with specific surface areas of 57.84 m(2)/g. Almost all the catechol or 4-chlorocatechol was oxidized within 3 h after the addition Of H2O2, while about only 10% of the parent compounds adsorbed onto nano-Fe3O4 without H2O2. And the oxidation curves followed the pseudo-second order kinetic model. 4-Chlorocatechol was oxidized faster than catechol, but with only 40% of mineralization. The contribution of homogeneous reaction induced by the leaching iron was limited. The surface generated reactive oxygen species were (OH)-O-center dot and HO2 center dot/O-2(center dot), which were further reacted to generate oxygen-centered radicals in both systems, and carbon-centered radicals only in catechol system. In-situ flow-cell ATR-FTIR spectroscopy further confirmed that the adsorbed catechol or 4-chlorocatechol remained on the nano-Fe3O4 surface, indicating an Eley-Rideal mechanism. Meanwhile, the generated carboxyl acids and some intermediates like ethers or dimers were also adsorbed. Accordingly, schematic diagrams of oxidation mechanisms of catechol and 4-chlorocatechol in nano-Fe3O4/H2O2 system were proposed. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available