4.7 Article

PAA grafting onto new acrylate-alumoxane/PES mixed matrix nano-enhanced membrane: Preparation, characterization and performance in dye removal

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 221, Issue -, Pages 111-123

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2013.01.079

Keywords

Nanofiltration; Nanoboehmite; Acrylate-alumoxane; PAA grafting; Acid blue

Ask authors/readers for more resources

Nanoboehmite particles were modified by acrylic acid to produce new alumoxane nanoparticles. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to realize shape, size and functional groups of synthesized acrylate-alumoxane nanoparticles. The analyses declared that spherical acrylate-alumoxane nanoparticles were formed with hydroxyl and acrylate groups on their surface. Boehmite and acrylate-alumoxane were successfully introduced into polyethersulfone (PES) membrane matrix by the phase inversion method. Fabricated membranes were examined for water permeability, dye (acid blue 193) retention capability and fouling resistance against whey proteins. The field emission scanning electron microscopy (FE-SEM) images were used to estimate the changes in skin-layer morphology and bulk porosity of the prepared membranes. As a result, the directly arrayed finger-like macro-voids as well as bulk porosity were gained by adding acrylate-alumoxane nanoparticles compared to pristine PES membrane. However, different quantities of acrylate-alumoxane in the casting solution induced no noticeable alteration in the membranes bulk porosity. The membranes containing 1 wt.% of acrylate-alumoxane and 1 wt.% of nanoboehmite were selected to be grafted by polyacrylic acid (PM). Comparison of grafting efficiency for pristine PES membrane and nanofiller blended membranes proved that acrylate-alumoxane offered more effective grafted membrane by providing polymerization initiation sites on mixed matrix membrane surface. In addition to high water permeability (around 19 kg/m(2) h bar), the acrylate-alumoxane mixed/PM grafted membrane showed superior dye removal and fouling resistance. Atomic force microscopy (AFM) as well as water contact angle test was applied for investigation of membranes surface properties. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available