4.7 Article

Phase holdup measurement in a gas-liquid-solid circulating fluidized bed (GLSCFB) riser using electrical resistance tomography and optical fibre probe

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 147, Issue 2-3, Pages 210-218

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2008.07.022

Keywords

Electrical resistance tomography; Circulating fluidized bed; Fibre optic; Phase holdup

Funding

  1. Natural Science and Engineering Research Council of Canada

Ask authors/readers for more resources

Phase holdups were measured in the riser section of a gas-liquid-solid circulating fluidized bed (GLSCFB). Electrical resistance tomography (ERT) as a non-invasive imaging technique, pressure transducers (PTs) and fibre optic probes were employed. Water was used as continuous and conductive phase, air as the gas phase and glass beads as solid nonconductive phases. ERT technique is based on conductivity measurement of the continuous phase (water in this study), which provides color-coded cross-sectional view of phases with a frequency of up to 250 images per second. The local conductivity measured by a number of electrodes located at the periphery of the plane was then further converted into a local phase concentration distribution based on Maxwell's relation. The results obtained by PTs, when combined with ERT results, were used to determine gas and solid holdups. Fibre optic probe was also employed to measure gas holdup independently. To measure gas and solid holdup, a model was introduced to exploit the fibre optic data in differentiating gas bubbles from solid particles in the riser. Radial profiles of the phase holdups were determined. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available