4.7 Article

Biosorption of hexavalent and trivalent chromium by palm flower (Borassus aethiopum)

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 141, Issue 1-3, Pages 99-111

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2007.10.026

Keywords

biosorption; hexavalent chromium; reduction; column study; equilibrium models; palm flower; regeneration; trivalent chromium

Ask authors/readers for more resources

In this paper, results of Cr(VI) and Cr(III) sorption from aqueous phase by palm flower (Borassus aethiopum) is presented. Batch kinetic and equilibrium experiments were conducted to determine the adsorption kinetic rate constants and maximum adsorption capacities. Both Cr(III) and Cr(VI) adsorption followed a second-order kinetics. For Cr(III), maximum adsorption capacity was 6.24 mg/g by raw adsorbent and 1.41 mg/g by acid treated adsorbent. In case of Cr(VI), raw adsorbent exhibited a maximum adsorption capacity of 4.9 mg/g, whereas the maximum adsorption capacity for acid treated adsorbent was 7.13 mg/g. There was a significant difference in the concentrations of Cr(VI) and total chromium removed by palm flower. In case of Cr(VI) adsorption, first it was reduced to Cr(III) with the help of tannin and phenolic compounds and subsequently adsorbed by the biosorbent. Acid treatment significantly increased Cr(VI) adsorption capacity of the biosorbent whereas, alkali treatment reduced the adsorption capacities for Cr(VI). However, in case of Cr(III), acid treatment significantly reduced the adsorption capacity whereas the adsorption capacity of alkali treated biosorbent was slightly less than that of raw adsorbent. FT-IR spectrum showed the changes in functional groups during acid treatment and biosorption of Cr(VI) and Cr(III). Column studies were conducted for Cr(III) to obtain the design parameters require for scale-up. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available