4.7 Article

Droplet size and stability of nano-emulsions produced by the temperature phase inversion method

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 140, Issue 1-3, Pages 626-631

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2007.12.016

Keywords

nano-emulsions; emulsion stability; PIT method

Ask authors/readers for more resources

We studied the formation and stability of n-decane in water nano-emulsions produced by the phase inversion temperature (PIT) emulsification method using polyoxyethylene lauryl ether as surfactant. The results obtained indicate that the droplet size and size distribution are strongly dependent on the methods of heating and cooling, and on the final temperature to which the mixture is cooled after phase inversion. Importantly, there exists an optimum storage temperature, at which the nano-emulsions are most stable, and develop ultra-small droplet sizes, ranging from 35 nm to 54 nm, with low polydispersity indices (similar to 0.2). This optimum temperature is about 20 degrees C below the PIT, and dependent on the surfactant concentration. Any departure in temperature from the optimum would result in increases in droplet sizes, polydispersity and instability by Ostwald ripening. Furthermore, nano-emulsions destabilized after a long period of storage at different temperatures can be rejuvenated simply by equilibration for a few minutes at the optimum temperature. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available