4.5 Article

Transesterification of sunflower oil in a countercurrent trickle-bed reactor packed with a CaO catalyst

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cep.2011.04.001

Keywords

Biodiesel; Calcium oxide; Sunflower oil; Trickle-bed; Transesterification

Funding

  1. JSPS [21360390]
  2. FWU
  3. Ministry of Education, Culture, Sports, Science and Technology of Japan
  4. Grants-in-Aid for Scientific Research [21360390] Funding Source: KAKEN

Ask authors/readers for more resources

Transesterification of sunflower oil with methanol to form biodiesel was performed in a countercurrent trickle-bed reactor, using calcium oxide particles 1-2 mm in diameter as a packed, solid base catalyst. Although biodiesel production generally requires a reaction temperature below the boiling point of methanol to maintain a heterogeneous, liquid-liquid reaction, in the present study the reaction temperature was varied from 80 to 140 degrees C to confirm the progress of transesterification in a gas-liquid-solid phase reaction system. Oil droplets released from a thin tube flowed downward, while vaporized methanol flowed upward in the bed. The effects of the reaction temperature, methanol and oil flow rates, and the bed height on the FAME yield were investigated. The oil residence time in the reactor, which was controlled by changing both the oil flow rate and the bed height, had a significant effect on the FAME yield. In addition, the FAME yield increased with reaction temperature and was maximal at 373 K due to the change in residence time associated with reduced oil viscosity at higher temperatures. The FAME yield was 98% at a reaction temperature of 373 K when the methanol and oil flow rates were 3.8 and 4.1 mL/h, respectively. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available