4.5 Article

Feasibility study of a thermally coupled reactive distillation process for biodiesel production

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cep.2010.02.002

Keywords

Biodiesel production; Thermally coupling; Reactive distillation

Funding

  1. CONACyT
  2. DGEST (Mexico)

Ask authors/readers for more resources

Biodiesel fuel represents an interesting alternative as a clean and renewable substitute of fossil fuels. A typical biodiesel production process involves the use of a catalyst, which implies high energy consumptions for the separation of the catalyst and the by-products of the reaction, including those of undesirable side reactions (such as the saponification reaction). A recently proposed process involves the use of short-chain alcohols at supercritical conditions, avoiding the use of a catalyst and the occurrence of the saponification reaction. This process requires fewer pieces of equipment than the conventional one, but its high energy requirements and the need of special materials that support the reaction conditions makes the main product, biodiesel fuel, more expensive than petroleum diesel. In this work, a modification of the supercritical process for the production of biodiesel fuel is proposed. Two alternatives are proposed. The process involves the use of either reactive distillation or thermally coupled reactive distillation. Simulations have been carried out by using the Aspen One (TM) process simulator to demonstrate the feasibility of such alternatives to produce biodiesel with methanol at high pressure conditions. A design method for the thermally coupled system is also proposed. Both systems have been tested and the results indicate favorable energy performance when compared to the original scheme. Furthermore, the thermally coupled system shows lower energy consumptions than the reactive distillation column. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available