4.4 Article

Enhancement of Ca-Based Sorbent Multicyclic Behavior in Ca Looping Process for CO2 Separation

Journal

CHEMICAL ENGINEERING & TECHNOLOGY
Volume 32, Issue 4, Pages 548-555

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ceat.200800525

Keywords

Ca-based sorbent; CO2 separation; Combustion; Multicycle behavior

Funding

  1. National Basic Research Program of China [2006CB705806]
  2. Foundation of Graduate Creative Program of Jiangsu Province [JS06059]

Ask authors/readers for more resources

The Ca-based sorbent looping cycle represents an innovative way Of CO2 capture for power plants. However, the CO2 capture capacity of the Ca-based sorbent decays sharply with calcination/carbonation cycle number increasing. In order to improve the CO2 capture capacity of the sorbent in the Ca looping cycle, limestone was modified with acetic acid solution. The cyclic carbonation behaviors of the modified and original limestones were investigated in a twin fixed-bed reactor system. The modified limestone possesses better cyclic carbonation kinetics than the original limestone at each cycle. The modified limestone carbonated at 640-660 degrees C achieves the optimum carbonation conversion. The acetic acid modification improves the long-term performance of limestone, resulting in directly measured conversion as high as 0.4 after 100 cycles, while the original limestone remains at a conversion of less than 0.1 at the same reaction conditions. Both the pore volume and pore area distributions of the calcines derived from the modified limestone are better than those derived from the original limestone. The CO2 partial pressure for carbonation has greater effect on conversion of the original limestone than on that of the modified sorbent because of the difference in their pore structure characteristics. The carbonation conversion of the original limestone decreases with the increase in particle size, while the change in particle size of the modified sorbent has no clear effect on cyclic carbonation behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available