4.7 Article

Porous graphene frameworks pillared by organic linkers with tunable surface area and gas storage properties

Journal

CHEMICAL COMMUNICATIONS
Volume 50, Issue 16, Pages 2015-2017

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cc46907g

Keywords

-

Ask authors/readers for more resources

We report the design and synthesis of two porous graphene frameworks (PGFs) prepared via covalent functionalization of reduced graphene oxide (RGO) with iodobenzene followed by a C-C coupling reaction. In contrast to RGO, these 3D frameworks show high surface area (BET, 825 m(2) g(-1)) and pore volumes due to the effect of pillaring. Interestingly, both the frameworks show high CO2 uptake (112 wt% for PGF-1 and 60 wt% for PGF-2 at 195 K up to 1 atm). PGFs show nearly 1.2 wt% H-2 storage capacity at 77 K and 1 atm, increasing to similar to 1.9 wt% at high pressure. These all carbon-based porous solids based on pillared graphene frameworks suggest the possibility of designing related several such novel materials with attractive properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available