4.4 Article

Absorption spectra of chlorophyll a and b in Lhcb protein environment

Journal

PHOTOSYNTHESIS RESEARCH
Volume 64, Issue 2-3, Pages 233-242

Publisher

SPRINGER
DOI: 10.1023/A:1006467617697

Keywords

chlorophylls; LHC II and CP29 spectroscopy; molar extinction coefficient; spectral form

Categories

Ask authors/readers for more resources

The spectral forms of the two chlorophyll species in higher plant Photosystem II antenna proteins have been experimentally determined within their protein environment. Recombinant CP29 and LHC II antenna proteins missing individual chromophores were obtained by over-expression in bacteria without any changing of the primary protein sequence and in vitro reconstitution. Difference absorption spectroscopy with respect to the corresponding proteins binding the complete pigment complement yielded the spectral shape and extinction of single chlorophyll a and b. A functional relation of their absorption was given by Gaussian subband decomposition covering the entire Q(x) and Q(y) optical region together with the absolute value of the molar extinction coefficient. With respect to analogous determinations reported in the literature for organic solvents, this information is valuable for further understanding the in-protein chlorophyll excited states and excited state dynamics: in particular, for the calculation of Forster transfer rates by means of chlorophyll-chlorophyll overlap integral employing the Stepanov relation for emission and single chromophore transition energies according to the results of mutational analysis of chlorophyll binding sites [Bassi et al. (1999) Proc Natl Acad Sci USA 96: 10056-10061; Remelli et al. (1999) J Biol Chem 274: 33510-33521].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available