4.4 Article

Surface modification of polymers and improvement of the adhesion between evaporated copper metal film and a polymer. I. Chemical modification of PET

Journal

JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY
Volume 14, Issue 9, Pages 1119-1130

Publisher

VSP BV
DOI: 10.1163/156856100743121

Keywords

surface modification; hydrazine; PET; metallized polymer

Ask authors/readers for more resources

To improve the interfacial adhesion between evaporated copper film and poly(ethylene terephthalate) (PET), the surface of PET films was modified by treating with hydrazine monohydrate. The effect of the treatment time in the range of 5-20 min with 80 wt% hydrazine monohydrate at 60 degrees C on the number of polar groups created on PET was investigated. The surface topography of and water contact angle on the PET film surface, the mechanical properties of the PET film, and the adhesion strength of evaporated copper metal film to the PET film surface were also investigated. The introduction of polar groups on the modified PET film surface was examined by FT-IR and ESCA analyses. The amount of polar groups increased to the maximum value with increasing treatment time to 10 min, and thereafter it decreased markedly. The surface roughness increased with increasing treatment time up to 10 min and cracks occurred after 20 min. The water contact angle and tensile properties decreased with increasing treatment time. Using the scratch test, the adhesion between Cu film and PET was found to increase with increasing treatment time up to 10 min and thereafter there was a remarkable decrease in adhesion. From these results, it was concluded that the optimum treatment time with hydrazine monohydrate (80 wt%) at 60 degrees C was about 10 min to improve copper-PET adhesion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available