4.5 Review

An oxygen isotope mixing model for the accretion and composition of rocky planets

Journal

SPACE SCIENCE REVIEWS
Volume 92, Issue 1-2, Pages 341-354

Publisher

SPRINGER
DOI: 10.1023/A:1005220003004

Keywords

-

Ask authors/readers for more resources

The oxygen isotope systematics in planetary and nebular matter are used to constrain the types of nebular material accreted to form a planet. The basic assumption of this model is that the mean oxygen isotopic composition of a planet is determined by the weighted mean oxygen isotopic composition of nebular matter accreted by the planet. Chondrites are taken as representatives of nebular matter. The chemical composition (which determines core size, mantle oxidation state, density, moment of inertia) of a planet results from the weighted mean compositions of the accreted nebular material, once the mass fractions of the different types of accreting matter are known. Here some results for Earth, Moon, Mars, and Vesta are discussed. The model implies that loss of volatile elements, such as alkalis and halogens, occurs during accretion and early planetary differentiation (e. g., by catastrophic impacts). The possible depletion mechanisms of moderately volatile elements are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available