4.4 Article

Effect of skin pass rolling on the primer adhesion and corrosion resistance of hot-dip galvanized (HDG) steel

Journal

JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY
Volume 14, Issue 4, Pages 583-600

Publisher

VSP BV
DOI: 10.1163/156856100742753

Keywords

skin pass; HDG steel; corrosion; adhesion; ESCA; GD-OES

Ask authors/readers for more resources

By using three different skin pass reductions, 0%, 0.75%, and 1.5%, the influence of skin pass rolling on the primer adhesion and corrosion resistance of primed hot-dip galvanized (HDG) steel has been studied. The corrosion resistance of primed panels was determined by a cyclic prohesion test, and the primer adhesion was examined with a combined cross-cut and impact test. Surface roughness was determined for untreated and pretreated skin passed panels and the samples were also studied using an optical microscope and a scanning electron microscope. Electron spectroscopy for chemical analysis (ESCA) and glow discharge optical emission spectroscopy (GD-OES) were used to characterize the chemical surface composition of the panels. According to the prohesion test results, the roughest samples showed the best corrosion resistance and also slightly improved adhesion test results. The ESCA and GD-OES results showed that the outermost surface was enriched by aluminium in the zinc coating. During skin pass rolling, the aluminium oxide-rich surface is broken and zinc is revealed to the surface. An increase in the skin pass reduction resulted in an almost linear increase in the surface roughness. Mechanical removal of the surface aluminium also affected the amount of aluminium dissolved during the chemical pretreatment. The best results obtained for the roughest samples are mainly due to the most homogeneous skin pass pattern obtained with the highest skin pass reduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available